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• We are given a training set of examples, e.g., images of dogs

• We want to learn a probability distribution 𝑝(𝑥) over images 𝑥 to allow for
• Generation: If we sample 𝑥new ∼ 𝑝(𝑥), 𝑥new should look like a dog (sampling)
• Density estimation: 𝑝(𝑥) should be high if 𝑥 looks like a dog, and low otherwise (anomaly 

detection)
• Unsupervised representation learning: We should be able to learn what these images 

have in common, e.g., ears, tail, etc. (features)

Learning Generative Models



• We are given a training set of examples, e.g., images of dogs

• What learning criterion should we use? 
• What optimization algorithm should we use? 
• What classes of models should we learn?

Learning Generative Models



• Given: a dataset  𝒟 = {𝒙1, … , 𝒙𝑁} of i.i.d. samples 
from the unknown data distribution 𝑝data(𝑥)

• Goal: learn a distribution 𝑝𝜃 𝑥 parameterized by 
𝜃 that is as close to 𝑝data(𝑥)

Learning Criterion: Maximum Likelihood Estimation

• Taking 𝑑 as the KL divergence introduced before:  min
𝜃

𝐾𝐿[𝑝data 𝑥 || 𝑝𝜃 𝑥 ]

• Since 𝐾𝐿 𝑝data 𝑥 || 𝑝𝜃 𝑥 = 𝐸𝑥∼𝑝data log 𝑝data 𝑥
𝑝𝜃 𝑥

and we optimize over 𝜃, the 
above problem is equivalent to

max
𝜃

𝐸𝑥∼𝑝data log 𝑝𝜃 𝑥

• As we do not know the true distribution 𝑝data(𝑥) and only have samples 𝒟 from 
it, we can replace the above objective with an unbiased estimate of it

max
𝜃

1
𝑁

𝑖=1

𝑁

log 𝑝𝜃 𝑥𝑖
This is the classic Maximum 
Likelihood Estimation (MLE) principle!



• Likelihood is expressed as the joint distribution over all samples
• And by our i.i.d. assumption

ℒ(𝜃) = 𝑝𝜃 𝒙1, … , 𝒙𝑁 =ෑ
𝑖=1

𝑁

𝑝𝜃 𝒙𝑖

• Taking the log, we can rewrite 

𝓁 𝜃 = log ℒ 𝜃 = log ෑ
𝑖=1

𝑁

𝑝𝜃 𝒙𝑖 = 
𝑖=1

𝑁

log 𝑝𝜃 𝒙𝑖

• The maximum likelihood estimator is the parameters that maximizes 𝓁 𝜃 , i.e.

ƶ𝜃𝑀𝐿 = argmax𝜃
𝑖=1

𝑁

log 𝑝𝜃 𝒙𝑖

Maximum Likelihood Estimation (MLE)



• Goal: optimize an objective that contains an expectation
min
𝜃

𝑔 𝜃 ≔ 𝐸𝑥~𝑝[𝑓 𝑥, 𝜃 ]

• First order algorithms to optimize 𝑔 𝜃
• Tractable even when 𝜃 is in high dimensions
• Gradient descent: 𝜃(𝑘+1) = 𝜃(𝑘) − 𝜂∇𝜃𝑔 𝜃(𝑘)

• Many variants to accelerate / deal with non-differentiability
• Challenge: It is difficult to compute ∇𝜃𝑔 𝜃 in closed form

• ∇𝜃𝑔 𝜃 = ∇𝜃𝐸𝑥~𝑝 𝑓 𝑥, 𝜃 = 𝐸𝑥~𝑝 ∇𝜃𝑓 𝑥, 𝜃
• Often 𝑝 is the true data distribution which we do not know; we have samples from 𝑝
• Even if we know 𝑝, integrating a potentially very complicated 𝑓 is difficult 

• Solution: Approximating ∇𝜃𝑔 𝜃 with samples
• Let 𝑥1, … , 𝑥𝑏 be a batch of i.i.d. samples from 𝑝
• 1

𝑏
σ𝑖
𝑏 ∇𝜃𝑓 𝑥𝑖, 𝜃 is an unbiased estimator of ∇𝜃𝑔 𝜃

• Stochastic gradient descent: 𝜃(𝑘+1) = 𝜃(𝑘) − 𝜂 1
𝑏
σ𝑖
𝑏 ∇𝜃𝑓 𝑥𝑖, 𝜃

Optimization Algorithm: Stochastic Gradient Descent
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• Given: 𝑁 i.i.d. samples 𝑥1, … 𝑥𝑁 from an unknown Gaussian 𝒩(𝜇, Σ) in ℝ𝐷

• Goal: use MLE to estimate the parameters 𝜃 = (𝜇, Σ) of the Gaussian distribution

• Recall Gaussian density: 𝑝 𝑥 = 1
2𝜋 𝐷 det(𝚺)

exp − 1
2
𝒙 − 𝝁 ⊤𝚺−𝟏 𝒙 − 𝝁

• This allows us to write down the likelihood function…

ℒ(𝜃) =ෑ
𝑖=1

𝑁

𝑝𝜃 𝒙𝑖 =
exp −1

2σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 ⊤𝚺−𝟏 𝒙𝑖 − 𝝁

(2𝜋)
𝑁𝐷
2 det(𝚺)

𝑁
2

• … and the log of the likelihood

Gaussian Parameter Estimation via MLE

𝓁 𝜃 =
𝑖=1

𝑁

−
𝐷
2
log 2𝜋 −

1
2
log det 𝚺 − 𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁

= −𝑁𝐷
2
log 2𝜋 − 𝑁

2
log det 𝚺 − 1

2
σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁



• Reminder: Log-likelihood objective

• To find the optimal          , we take the derivatives of our objective w.r.t our 
parameters and set them to 0

𝜕𝓁(𝜃)
𝜕𝝁

= 0,
𝜕𝓁(𝜃)
𝜕𝚺

= 0

Finding the gradient of parameters

𝓁 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2

𝑖=1

𝑁

𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁



For the mean
• Reminder: Log-likelihood objective

• Taking the derivative log-likelihood w.r.t. to the mean yields

𝜕𝓁(𝜃)
𝜕𝝁

= σ𝑖=1
𝑁 𝚺−1 𝒙𝑖 − 𝝁 = 0

σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 = 0

• Hence, ƶ𝝁𝑀𝐿 =
1
𝑁
σ𝑖=1
𝑁 𝒙𝑖

𝓁 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2

𝑖=1

𝑁

𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁



For the covariance
• Reminder: Log-likelihood objective

• Before we find the derivative, we find a change of variable to handle the inverse 
covariance (also known as the precision matrix

𝑺 = 𝚺−1

• And note the following identity involving traces
𝑺𝒙 = tr 𝒙⊤𝑺𝒙 = tr 𝑺𝒙𝒙⊤

𝓁 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2

𝑖=1

𝑁

𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁



For the covariance
• Reminder: Log-likelihood objective

• The two facts:
• 𝑺 = 𝚺−1

• 𝑺𝒙 = tr 𝒙⊤𝑺𝒙 = tr 𝑺𝒙𝒙⊤

• Using these two facts, we can rewrite the log-likelihood in terms of 𝑺 (omitting 
terms that derivative will cancel)

𝓁 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
log det 𝚺 −

1
2

𝑖=1

𝑁

𝒙𝑖 − 𝝁 ⊤𝚺−1 𝒙𝑖 − 𝝁

𝓁 𝜃 = −
𝑁𝐷
2
log 2𝜋 −

𝑁
2
logdet 𝑺−1 −

1
2
tr 𝑺

𝑖=1

𝑁

𝒙𝑖 − 𝝁 𝒙𝑖 − 𝝁 ⊤



For the covariance
• From our re-written log-likelihood function

• Taking the derivative with respect to 𝑺

𝜕𝓁(𝜃)
𝜕𝑺

=
𝑁
2
𝑺−1 −

1
2
σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 𝒙𝑖 − 𝝁 ⊤ = 0

• Arriving at our desired ML estimator for the covariance
ƶ𝚺𝑀𝐿 = 𝑺−1 =

1
𝑁
σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 𝒙𝑖 − 𝝁 ⊤

𝓁 𝜃 = −
𝑁𝐷
2
log2𝜋 +

𝑁
2
logdet 𝑺 −

1
2
tr 𝑺

𝑖=1

𝑁

𝒙𝑖 − 𝝁 𝒙𝑖 − 𝝁 ⊤



• The complete statement:

• If we assume our data samples are i.i.d Gaussians, the maximum log likelihood 
estimators for the mean and covariance are

ƶ𝝁𝑀𝐿 =
1
𝑁
σ𝑖=1
𝑁 𝒙𝑖 ƶ𝚺𝑀𝐿 = 𝑺−1 = 1

𝑁
σ𝑖=1
𝑁 𝒙𝑖 − 𝝁 𝒙𝑖 − 𝝁 ⊤

ML Estimators for mean and variance
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• To modeling a single pixel's color, one needs three 
discrete random variables:

• Red Channel 𝑅 taking values in {0,⋯ , 255}
• Green Channel 𝐺 taking values in {0,⋯ , 255}
• Blue Channel 𝐵 taking values in {0,⋯ , 255}

Example: RGB images

• Sampling from the joint distribution (𝑟, 𝑔, 𝑏) ∼ 𝑝(𝑅, 𝐺, 𝐵) randomly generates a 
color for the pixel. How many parameters do we need to specify the joint 
distribution 𝑝(𝑅 = 𝑟, 𝐺 = 𝑔, 𝐵 = 𝑏) ?

256 ∗ 256 ∗ 256 − 1



Example: Joint Distribution

• Suppose 𝑋1, … , 𝑋𝑛 are Bernoulli random variables modelling 𝑛 pixels of an image
• How many possible states?

2 × 2 × ⋯× 2

𝑛 times

= 2𝑛

• Sampling from 𝑝 𝑥1, … , 𝑥𝑛 generates an image
• How many parameters to specify the joint distribution 𝑝 𝑥1, … , 𝑥𝑛 over 𝑛

binary pixels?
2𝑛 − 1



• If 𝑋1, … , 𝑋𝑛 are independent, then
𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 ⋯𝑝 𝑥𝑛

• How many possible states?         2𝑛

• How many parameters to specify the joint distribution 𝑝 𝑥1, … , 𝑥𝑛 ?
• How many to specify the marginal distribution 𝑝 𝑥1 ? 1

• 2𝑛 entries can be described by just 𝑛 numbers (if each 𝑋𝑖 just take 2 
values)!

• Independence assumption is too strong. Model not likely to be useful
• For example, each pixel chosen independently when we sample from it.

Structure Through Independence



Structure Through Conditional Independence
• Using Chain Rule

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 ∣ 𝑥1 𝑝 𝑥3 ∣ 𝑥1, 𝑥2 ⋯𝑝 𝑥𝑛 ∣ 𝑥1,⋯ , 𝑥𝑛−1
• How many parameters? 1 + 2 +⋯+ 2𝑛−1 = 2𝑛 − 1

• 𝑝 𝑥1 requires 1 parameter
• 𝑝 𝑥2 ∣ 𝑥1 = 0 requires 1 parameter, 𝑝 𝑥2 ∣ 𝑥1 = 1 requires 1 parameter Total 2 

parameters.
• . .

• 2𝑛 − 1 is still exponential, chain rule does not buy us anything.
• Now suppose 𝑋𝑖+1 ⊥ 𝑋1, … , 𝑋𝑖−1 ∣ 𝑋𝑖, then

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 ∣ 𝑥1 𝑝 𝑥3 ∣ 𝑥1, 𝑥2 ⋯𝑝 𝑥𝑛 ∣ 𝑥1,⋯ , 𝑥𝑛−1
= 𝑝 𝑥1 𝑝 𝑥2 ∣ 𝑥1 𝑝 𝑥3 ∣ 𝑥2 ⋯𝑝 𝑥𝑛 ∣ 𝑥𝑛−1

• How many parameters? 2𝑛 − 1. Exponential reduction!



• Autoregressive Models

𝑝 𝐱 = 𝑝 𝑥0 ෑ
𝑖=1

𝐷

𝑝 𝑥𝑖|𝐱<𝑖 ,

• Latent Variable Models
𝐳 ∼ 𝑝 𝐳
𝐱 ∼ 𝑝 𝐱|𝐳

• Energy Based Models

𝑝 𝐱 =
exp{−𝐸 𝐱 }

𝑍

Taxonomy of Generative Models



Taxonomy of Generative Models


