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Learning Generative Models

* We are given a training set of examples, e.g., images of dogs

6eEM

Model family

* We want to learn a probability distribution p(x) over images x to allow for
* Generation: If we sample xpew ~ pP(X), xnew Sshould look like a dog (sampling)

* Density estimation: p(x) should be high if x looks like a dog, and low otherwise (anomaly
detection)

* Unsupervised representation learning: We should be able to learn what these images
have in common, e.g., ears, tail, etc. (features)



Learning Generative Models

 We are given a training set of examples, e.g., images of dogs

6eM

Model family

* What learning criterion should we use?
* What optimization algorithm should we use?

 What classes of models should we learn?



Learning Criterion: Maximum Likelihood Estimation
* Given: a dataset D = {x4, ..., xy} of i.i.d. samples -
from the unknown data distribution Pdata(X)

* Goal: learn a distribution pg(x) parameterized by

6 that is as close to pgata (X) Model family

* Taking d as the KL divergence introduced before: m@in KL[pgata () || po(x)]

* Since KL[pgata(x) || Do (X)] = Expp... [log and we optimize over 6, the

above problem is equivalent to

max Ex.py,, [10g pg (x)]

* As we do not know the true distribution pg,:5(x) and only have samples D from
it, we can replace the above objectlve with an unbiased estimate of it

1 This is the classic Maximum
maX AT Og Po (xl) Likelihood Estimation (MLE) principle!




Maximum Likelihood Estimation (MLE)

* Likelihood is expressed as the joint distribution over all samples

 And by our i.i.d. assumption

£(8) = po (s, xy) = | | poxd)

* Taking the log, we can rewrite
N N
£(6) = log(L(8)) = log l_[ po(x;) | = Z log pg (x;)
i=1 i=1
* The maximum likelihood estimator is the pl\?rameters that maximizes £(0), i.e.

Oy = argmaxg 2 log pe (x;)
=1



Optimization Algorithm: Stochastic Gradient Descent

* Goal: optimize an objective that contains an expectation
min g(6) = Ey_p[f (x, 0)]

* First order algorithms to optimize g(0)
* Tractable even when 6 is in high dimensions

» Gradient descent: §**1 = g(&) — py, g(9))
e Many variants to accelerate / deal with non-differentiability

* Challenge: It is difficult to compute V5 g(8) in closed form

+ Vg g(6) = VoEyp[f (x,0)] = E,_[Vof (x, 6)]
* Often p is the true data distribution which we do not know; we have samples from p
* Even if we know p, integrating a potentially very complicated f is difficult

* Solution: Approximating Vg g(8) with samples
* Let x4, ..., Xxp be a batch of i.i.d. samples from p

. %Z? Vo f(x;,8) is an unbiased estimator of V4 g(6)
* Stochastic gradient descent: 1) = g(k) — %Z? Vof(x;0)
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Gaussian Parameter Estimation via MLE

e Given: N i.i.d. samples x4, ... x5 from an unknown Gaussian N (i, X) in R?
* Goal: use MLE to estimate the parameters 8 = (u, X) of the Gaussian distribution

* Recall Gaussian density: p(x) = \/(zn)Dl T exp (— % (x—p) 2 1(x - u))

 This allows us to write down the likelihood function...
1 _
exp (—72?=1<xi ~TE 1 (x; — m)

N
L) =] [pe(x)) =
1-—_1[ : (2n) 7 det(E)?

e ... and the log of the likelihood

2(0) = z ——log 2T — —log detE — (x; — W)= (x; — p)

= —Tlog 21T — ;lOg detZ _% Ii\le(xi — H)Tz_l('xi — l’l')



Finding the gradient of parameters

* Reminder: Log-likelihood objective

1

N

ND N

£(6) = — —-log2m — - logdet X EZ(xi —W)TE N (x, — )
=1

* To find the optimal §,,; , we take the derivatives of our objective w.r.t our
parameters and set them to O

0£(0) ) 0£(0) )
ou o



For the mean

* Reminder: Log-likelihood objective
N

ND N 1
£(6) = — —-log2m — - logdet X EZ(xi —W)TE N (x, — )
=1

L=

* Taking the derivative log-likelihood w.r.t. to the mean yields

9£(6)

o = Zliv=1z_1(xi —n) =0

Zév=1(xi —u)=0

A 1 oN
* Hence, Ky = Nzi:rxi



For the covariance

* Reminder: Log-likelihood objective
1

N

ND N

£(6) = — —-log2m — - logdet X EZ(xi —W)TE N (x, — )
=1

* Before we find the derivative, we find a change of variable to handle the inverse
covariance (also known as the precision matrix
§=x1

* And note the following identity involving traces
Sx =tr(x"Sx) = tr(Sxx")



For the covariance

* Reminder: Log-likelihood objective
N

ND N 1
£(6) = — —-log2m — - logdet X EZ(xi —W)TE N (x, — )
=1
* The two facts:
. §=3"1

e« Sx =tr(x"Sx) = tr(Sxx")

* Using these two facts, we can rewrite the log-likelihood in terms of § (omitting
terms that derivative will cancel)

ND N 1 A
£(0) = ——-log2m —  logdet(s™") — tr SE(xi — ) (x; — )T
-

l



For the covariance

* From our re-written log-likelihood function

ND N 1 4
£(6) = ——log 27 + = log det(S) — > tr SE(xi W) (x — )T
=1

l

* Taking the derivative with respectto S

0¢(6) N

1
o =55 _Ezliv=1(xi —wWe;—w" =0

* Arriving at our desired ML estimator for the covariance
A 1
By =87 = SRl — (i -7



VIL Estimators for mean and variance

* The complete statement:

* If we assume our data samples are i.i.d Gaussians, the maximum log likelihood
estimators for the mean and covariance are

R 1 A _ 1
Ky = gZéin Zyr =39S 1= Nzlivﬂ(xi — ﬂ)(xi — H)T
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Example: RGB images

* To modeling a single pixel's color, one needs three
discrete random variables:
* Red Channel R taking values in {0, ---, 255}
* Green Channel G taking values in {0, ---, 255}
* Blue Channel B taking values in {0, ---, 255}

* Sampling from the joint distribution (7, g,b) ~ p(R, G, B) randomly generates a
color for the pixel. How many parameters do we need to specify the joint
distributionp(R =1r,G = g,B =b) ?

256 x 256 x 256 — 1



Example: Joint Distribution

* Suppose X3, ..., X,; are Bernoulli random variables modelling n pixels of an image

* How many possible states?
2X2X-xX2=2"

-

n times
* Sampling from p(x4, ..., x,,) generates an image

* How many parameters to specify the joint distribution p(x4, ..., x,,) over n
binary pixels?

2" —1



Structure Through Independence

* If X4, ..., X,, are independent, then
p(xl; an) — p(xl)p(xZ) p(xn)
 How many possible states? 2"
* How many parameters to specify the joint distribution p(x, ..., x;,;) ?

* How many to specify the marginal distribution p(x;) ? 1

« 2™ entries can be described by just n numbers (if each X; just take 2
values)!

* Independence assumption is too strong. Model not likely to be useful

* For example, each pixel chosen independently when we sample from it.




Structure Through Conditional Independence

* Using Chain Rule
p(x1, ., ) = pxp)p(x | x)p(x3 | X9, %) Oy | X9, X21)
e How many parameters? 1 + 2 + -+ 2" 1 = 2" — 1

* p(x,) requires 1 parameter

* p(x, | x; = 0) requires 1 parameter, p(x, | x; = 1) requires 1 parameter Total 2
parameters.

e 2™ — 1 is still exponential, chain rule does not buy us anything.
* Now suppose X;.¢1 L Xq,...,X;—1 | X;, then
p(xy, o, x) = pe)p(xy | x)p(x3 123, x2) -+ POy | s, X 1)
= p(x)p(xy | x)p(xs | x3) - plxy | xp-1)
* How many parameters? 2n — 1. Exponential reduction!



Taxonomy of Generative Models

e Autoregressive Models

D
p() =pCo) | [p Gl
1=1

e Latent Variable Models

z ~ p(z)
x ~ p(x|z)
* Energy Based Models
exp{—E(x)}




Taxonomy of Generative Models

Deep Generative Models

Autoregressive Flow-based Latent variable = Energy-based
models models models models
(e.g., PixelCNN) (e.g., RealNVP)
Implicit models Prescribed models

(e.g., GANSs) (e.g., VAESs)



